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INTRODUCTION 

The aim of this experiment is to test a model for the magnetic field produced by a solenoid. We hope 

to make predictions about the results of tests done on one and two solenoids using equations derived 

from the Boit-Savart law of magnetic fields created by currents, then test the predictions 

experimentally. 

Solenoids are used as sources of magnetic field in many places. They are often used in switches, 

actuators, and locks, in automatic gearboxes, and in medical equipment. They are a heavily used part 

of modern life, so it is critical that their workings are well understood.  

Accurately knowing what the magnetic field of any solenoid looks like using a model is vital for 

these everyday uses and also for further experimentation using solenoids such as particle 

accelerators. The model we are testing is based on the Boit-Savart law of magnetic fields, discovered 

in 1820, and will be explained further in the next section. 

 

 

 

 

METHODS 

About the model 

The model for our solenoid comes from the Boit-Savart law for a loop of wire with some current 

running through it. In this equation, 𝑑𝑙 is a small section of moving charge in the direction of the 

Figure 1. Labeled diagram of a loop of current in a wire 
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current, 𝑟 is the vector from 𝑑𝑙 to the point where we are measuring the magnetic field, I is the 

current, and 𝜇0 is the vacuum permeability. 

𝐵(𝑟) =  
𝜇0

4𝜋
∫

𝐼𝑑𝑙 ⃗⃗⃗ × 𝑟   

|𝑟|3
 

Since our loop of wire has a rotational symmetry, the angle between 𝑑𝑙 and 𝑟 is always 90o, meaning 

that the top half of our integral is 𝐼|𝑑𝑙||𝑟|𝑛̂, where n is the direction vector pointing perpendicular to 

both 𝑑𝑙 and 𝑟. Due to the symmetry, all vector directions not in the x direction away from the 

solenoid cancel out, leaving just the Bx which is equal to 𝐵(𝑟)𝑠𝑖𝑛𝜃. 𝑠𝑖𝑛𝜃 is just 
𝑅

|𝑟|
 so Bx is 

𝐵𝑥 =  
𝑅

|𝑟|

𝜇0

4𝜋

𝐼

|𝑟|2
∫ |𝑑𝑙 ⃗⃗⃗ |  

The absolute value of the r vector is found using Pythagoras to be √𝑥2 + 𝑅2 where x is the straight-

line distance to the point where we are evaluating Bx. When we now do the integral, we sum up all 

the small |𝑑𝑙 ⃗⃗⃗ | values which gives the length of the wire loop, 2𝜋𝑅. Putting this all together gives 

this equation for field strength in the x direction: 

𝐵𝑥 =  
𝜇0

2

𝑅2𝐼

(𝑥2 + 𝑅2)
3
2

 

This equation works well for a single loop, but if we want to measure at any distance x from a 

solenoid, we will need an equation that takes into account the width of the solenoid. For this, we can 

use the equation: 

𝐵𝑥 =
𝜇𝑜𝑁𝐼

4𝑙
(

𝑥 + 𝑙

√(𝑥 + 𝑙)2 + 𝑅2
−

𝑥 − 𝑙

√(𝑥 − 𝑙)2 + 𝑅2
) 

Where 𝑙 is half the width of the solenoid and N is the number of turns. This is the main equation that 

I will be using for modeling the results of the second and third parts of the experiment. For the first 

experiment, x=0, which gives a simplified version of the above formula: 

𝐵𝑥 =
𝜇0𝑁𝐼

2√𝑙2 + 𝑅2
 

Finally, the equation below can be used to calculate the uncertainty in any of the Bx equations: 

𝜎(𝐵𝑥) =  √(
𝜕𝐵𝑥

𝜕𝐼
× 𝜎(𝐼))

2

+ (
𝜕𝐵𝑥

𝜕𝑙
× 𝜎(𝑙))

2

+ (
𝜕𝐵𝑥

𝜕𝑥
× 𝜎(𝑥))

2

+ (
𝜕𝐵𝑥

𝜕𝑅
× 𝜎(𝑅))
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Equipment 

- Two identical solenoids, mounted on a rail with a ruler to measure distances, with a known 

number of turns N, radius R, and width 2𝑙. In this experiment we used solenoids with 397 

turns, a 15.5cm radius and a width of 0.47 

- Hall effect sensor to measure the magnetic field strength 



- A power supply that can operate in constant voltage or constant current mode, and can apply 

a constant voltage independently to each solenoid 

- A current meter 

Risks 

Be aware that solenoids can get hot, especially when large amounts of current are flowing through 

them. Be careful when touching the solenoid while it’s on or after it’s been on. Switch off the current 

when you are not taking measurements and do not run an excessive amount of current through the 

solenoid. 

You are working with mains power electricity through the power supply, so make sure that all 

equipment has been safety checked and follows safety regulations. The wires of all your devices 

should be well isolated. 

Testing the model at a single point as current varies 

Using equation 3, we know that the magnetic field strength of a wire should be directly proportional 

to the current through it. Since we know what the model says the proportionality constant between 

them should be, the aim of the first part of this experiment is to test this relation and see if it is 

consistent with the model. There may also be some correction factor that can be worked out using 

these results, which can be applied to later examinations of the model. 

The first step is to set up the Hall effect sensor so that it can accurately measure the magnetic field 

strength produced by the solenoids. This means eliminating any background effects such as the 

earth’s magnetic field. This can be done by adjusting the digital reading of the Hall effect sensor to 

be zero when there is no current through the solenoids. 

Place the probe exactly in the center of the solenoid and take measurements of the magnetic field 

strength as you increase the current. For this experiment, we used increments of 0.15A in the range 

from 0A to 1.5A. 

Do this for both solenoids to check that they are identical. If they are not identical, then it is harder to 

model the results, but it is still possible to adjust for it by using an altered version of equation 2. 

 

Testing the model by adjusting the distance to one solenoid 

 

This part of the experiment requires a constant current. We used a current of 1.5A, however larger 

currents would give smaller uncertainties in the final results. 

Figure 2. Diagram of the magnetic field created by a single solenoid 

and the theoretical prediction of the axial magnetic field strength 
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Supplying current to only one solenoid, move the Hall effect sensor along the axis of the solenoid 

and measure the axial magnetic field strength. A distance of 30cm with steps of 3cm was used for 

this part of the experiment. 

Plot the experimental results next to the theoretical predictions obtained with equation 2. 

Testing the model by moving around the midpoint of two solenoids 

 

 

 

 

 

 

The final part of this experiment involves using both solenoids to create a flat section of magnetic 

field around the midpoint of their separation, then using the Hall effect sensor to measure the 

magnetic field strength at different points around the midpoint. Do this for 2 different separations of 

solenoid. For example, we used a 15cm and a 20cm separation. Our data was taken between -5cm 

and 5cm from the midpoint, with intervals of 1cm, and compared to the results of the theoretical 

predictions. 

A flat section of magnetic field means the rate of change of the magnetic field strength at the 

midpoint is zero, making it either a local maximum point or a local minimum point. As you can see 

in Figure 2, the model predicts that the distance between the solenoids will affect whether the 

midpoint of the magnetic field is a point of local maximum or local minimum. Using equation 2, you 

can get equation 5 for this experiment, where D is half the separation between the two solenoids and 

x is the distance from the midpoint: 

 𝐵𝑥 =
𝜇𝑜𝑁𝐼

4𝑙
(

𝐷 + 𝑥 + 𝑙

√(𝐷 + 𝑥 + 𝑙)2 + 𝑅2
−

𝐷 + 𝑥 − 𝑙

√(𝐷 + 𝑥 − 𝑙)2 + 𝑅2
+

𝐷 − 𝑥 + 𝑙

√(𝐷 − 𝑥 + 𝑙)2 + 𝑅2
−

𝐷 − 𝑥 − 𝑙

√(𝐷 − 𝑥 − 𝑙)2 + 𝑅2
) 

If we set the second derivative of equation 5 with respect to x as equal to zero, then let x equal zero 

and D be a variable, we can find at what distance the field strength at the center should switch from a 

maxima to a minima, around 16cm for us. This should be where the magnetic field strength around 

the midpoint is most flat. We will do this part of the experiment twice, once with 15cm separation 

and once with 20cm separation, so we expect to see a maximum point in the 15cm data and a 

minimum point in the 20cm data if our model is correct, and in both cases the magnetic field should 

be relatively constant. 

 

 

 

 

 

Figure 3. Diagrams of the magnetic field created by two solenoids spaced closely (left) and further apart (right) 

and the shape of the theoretical predictions of the axial magnetic field strength 
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RESULTS 

Testing the model at a single point as current varies  

 

As you can see in Figure 4, the relationship between magnetic field strength at the center of a 

solenoid and the current is linear. Figure 4 shows a strong relationship with tiny errors, the error bars 

are plotted, but they are small. From equation 5 we expected Bx and I to have a linear relationship. 

𝑋2 = ∑
[𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏)]2

𝑚2𝜎𝑥,𝑖
2 + 𝜎𝑦,𝑖

2

𝑛

𝑖=1

 

To find the line of best fit and its uncertainty for my data, I used a reduced X2 ‘goodness of fit’ test 

shown in figure 5, where a range of gradients and intercepts that fit the data are run through equation 

6 above, and a range is chosen. The standard deviation of a reduced X2 test is 𝜎 =  √𝑣/2, where v is 

the degrees of freedom of the data. I have also placed a box around reduced X2 values that are within 

the standard deviation as a representation of the error. I used a logged representation of reduced X2 in 

the graph because the value grows very rapidly and makes it harder to interpret. 

Due to the very tiny uncertainties in my data, the initial reduced X2 values were very large. This is 

likely due to intrinsic scatter in our data, which could be caused by environmental fluctuations such 

as nearby electronics, so I introduced an extra uncertainty of 0.0065 mT to my magnetic field 

strength error, bringing the reduced value of the best fitting line to 0.998, very close to 1. The 

gradient of this line is 1.61 ± 0.02 mTA-1, or (1.61 ± 0.02) × 10-3 TA-1. 

To find out if this matches our predictions, we can check equation 3. From this equation, we know 

that the gradient of a graph of Bx against I should give a gradient of: 

𝜇0𝑁

2√𝑙2 + 𝑅2
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Figure 4. Plot of magnetic field strength (mT) at the center of 

a solenoid against current (A) in the solenoid. 

Figure 5. Contour plot of X2 values for different models to fit 

the data as well as possible. 



Since we know all of these values with an uncertainty in 𝑙, we can find out what our model predicts 

the gradient should be, and it’s 1.59 × 10-3 TA-1 with a negligible uncertainty. This is very close to 

our result, and it’s within our error estimates, meaning that the model is, so far, a good prediction of 

reality. Consequently, we don’t need to use a correction factor to adjust the model for future 

calculations. The below plot comparing the model and the experimental values shows how well the 

prediction fits reality for this set of data.  

Testing the model by adjusting the distance to one solenoid 

The model in Figure 8 comes from equation 2 evaluated when x is evaluated between 0m and 0.3m 

from the center of the solenoid, overlayed over Figure 7, the graph of our collected data. 

You will notice that the model predicts that the magnetic field strength should be slightly weaker 

than the obtained experimental results across the whole range of distances.  

This discrepancy could be caused by a systematic error with the current measuring equipment used 

for the experiments. I believe this is the most likely cause due to the upcoming results for the 

experiment using two solenoids, but it could also be caused by an incorrect assumption for our model 

or some other unaccounted-for error. 

Figure 6. Comparison between the model and the experimental values for the 

relationship between magnetic field strength in the center of a solenoid and current 

Figure 7. Plot of magnetic field strength (mT) against the 

distance from the center of the solenoid (m) 
Figure 8. Comparison between the model and 

experimental values for the distance adjustment experiment 



Figure 9. Same as figure 6 but using Current = 1.55A 

instead of Current = 1.5A 

Figure 10. figure 4 but an amount has been added to 

each current value proportional to its value 

Figure 11. Graphs for the magnetic field strength around the midpoint of two solenoids of radius 15.5cm spaced 

20cm apart, the rightmost graph’s model uses a current of 1.59A instead of 1.5A 

Figure 12. Graphs for the magnetic field strength around the midpoint of two solenoids of radius 15.5cm spaced 

15cm apart, the rightmost graph’s model uses a current of 1.56A instead of 1.5A 

The final two experiments use a constant current of 1.5A. however, the results here more closely fit a 

current of around 1.55A as shown in Figure 9. The data in the first experiment still closely fits the 

model if an amount (proportional to how much was added to 1.5A to become 1.55A) is added to each 

current value, but not quite as well as previously, as you can see in figure 10.  

 

 

 

 

 

 

 

 

Testing the model by moving around the midpoint of two solenoids 

 

 

 

 

 

 

 

As you can see in Figure 11 and Figure 12, the difference between the model and the experimental 

results is more apparent in this experiment, and again, it can be explained by a systematic error 

regarding the measurement of current. 

Despite this, looking at the zoomed-out graphs on the left, you can see that the model is relatively 

close, and it correctly predicted the shape of the graph of magnetic field strength against distance 

from midpoint for both 20cm and 15cm spaced solenoids. Our prediction from the model, that the 

magnetic field strength should be relatively constant around the midpoint of the two solenoids, was 

correct as can be seen in leftmost graphs in Figure 11 and Figure 12. 

 

 

 

 

 

 



The average percentage change in magnetic field strength 5cm from the midpoint compared to at the 

midpoint of the solenoids is 3.4% for 20cm separation and 1.9% for 15cm separation. This is in line 

with our model because not only is the field strength relatively constant for both, but it is also more 

constant for the 15cm separation, which is closer to the 16cm point where we previously estimated 

the magnetic field strength would be most constant.  

This consistency of the model, despite the problem in our results, is obvious when looking at the 

graphs, since both the experimental and theoretical results have the same curve shape. The separation 

that creates the most consistent magnetic field strength is not dependent on current but is dependent 

on the separation D, the solenoid width 2𝑙, and the radius R, meaning that these variables are likely 

not the cause of our issue, making me more confident that a systematic error with current is the most 

likely explanation for our results. 

Conclusion 

The first experiment varying current fit the theoretical values very well. The hypothesis that current 

through a solenoid and magnetic field strength at the center of the solenoid are directly proportional 

was shown to be correct, as was the hypothesised value of the proportionality constant between 

them.  

After adding a small amount extra random error in the magnetic field value of ± 0.0065 mT to 

account for environmental factors, our data fit the theoretical values extremely well, with a reduced 

X2 value of 0.998. 

The second experiment using a constant current but varying distance to a single solenoid also fit the 

theoretical values quite well and within the error. Although it fits within the error, the experimental 

data has a higher-than-expected magnetic field strength, which could be explained by a systematic 

error in our constant current. A current of 1.55A instead of 1.5A fits the model better.  

The final experiment makes the slight difference visible in the last experiment more pronounced. 

Despite this, our hypothesis about the shape and strength of the magnetic field was still shown to be 

true, even though the theoretical values were not within the uncertainty of our experimental values. 

Once again, it is possible that this discrepancy is caused by a systematic error in the constant current, 

as the theoretical model fits our results far better if the current through our solenoids was around 

1.56A or 1.59A for 15cm separation and 20cm separation, respectively. Although it is possible that 

the issue is caused by an incorrect model or other unaccounted-for uncertainties. 

In conclusion, the model has very good prediction power for the relationship between solenoid 

current and magnetic field strength and for the shape of the magnetic field, but our results don’t 

confirm the model’s ability to describe the behavior of the magnetic field strength between two 

solenoids. 

The experiment should be repeated with a more careful focus on a correct constant current through 

the solenoid, and a higher current to remove some uncertainty. If I were to do this again, along with 

what I just mentioned, I would take more measurements of each magnetic field strength value, and I 

would do the third experiment with many additional solenoid separation distances. 
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